Synthesis and Characterization of Mixed Carbamato Complexes of Palladium(II) and Related Compounds

N. SONODA and T. TANAKA Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan Received September 2, 1974

Thioselenocarbamato complexes of palladium(II) with formula $Pd(PR_3)Cl(SSeCNR'_2)$ ($PR_3 = PPh_3$, $PMePh_2$, or PMe_2Ph ; R' = Me, Et) have been prepared. These complexes react with dithio-, monothio-, or monoselenocarbamato ligand, with or without an elimination of PR_3 to give mixed carbamato complexes, $Pd(SSeCNR_2)(S_2CNR_2)$ (R = Me and Et) or $Pd(PR_3)$ $Cl(SSeCNMe_2)(YC(O)NMe_2)$ ($PR_3 = PPh_3$, $PMePh_2$; Y = S or Se). Properties and configurations of these complexes are described on the basis of the conductivity measurements, infrared and pmr spectra.

Introduction

In the previous papers, $^{1-3}$ we have reported the synthesis and spectroscopic studies of some square planar d^8 metal complexes of N,N-dialkylthioselenocarbamate (A, B, and C):

Proton or ³¹P nmr spectra of these complexes have shown that the coordination ability of the sulfur and selenium atoms to the d^8 metal resembles closely each other.¹⁻³

This paper reports the preparation of some (N,N-dialkylthioselenocarbamato) (*tert*-phosphine)chloropal-

ladium(II), $Pd(PR_3)Cl(SSeCNR'_2)$ ($PR_3 = PPh_3$, PMePh₂, PMe₂Ph; R' = Me or Et) and the reactions with other carbamato ligands, *i.e.* S₂CNR₂, SC(O) NR₂, and SeC(O)NR₂, to give mixed carbamato complexes. In addition, some dithiocarbamato analogs were prepared to discuss the pmr spectra of these thioselenocarbamato complexes.

Experimental

Materials

Bis(*tert*-phosphine)dichloro- $\mu\mu$ -dichloropalladium-(II), [Pd(PR₃)Cl₂]₂ (PR₃ = PPh₃, PMePh₂, PMe₂Ph), was prepared by the literature methods.⁴ (N,N-Dialkylthioseleno- and -dithiocarbamato)dimethylchlorotin (IV), Me₂SnCl(dmtsc) (dmtsc = SSeCNMe₂),⁵ Me₂ SnCl(detsc) (detsc = SSeCNEt₂),¹ and Me₂SnCl(dmdtc) (dmdtc = S₂CNMe₂)⁶ were prepared as described elsewhere. Bis(N,N-dimethylmonothio- and -monoselenocarbamato)dimethyltin(IV), Me₂Sn(dmmtc)₂ (dmmtc = SC(O)NMe₂)⁷ and Me₂Sn(dmmsc)₂ (dmmsc = SeC(O)NMe₂)⁸ were recently synthesized in our laboratory.

(N,N-Dialkyldicalcogenocarbamato)(tert-phosphine)chloropalladium(II)

A solution of Me₂SnCl(dmtsc) (0.40 g, 1.14 mmol) in dichloromethane was dropped slowly with stirring to a suspension of $[Pd(PPh_3)Cl_2]_2$ (0.50 g, 0.57 mmol) in the same solvent. The reddish brown suspension changed to a reddish orange solution, which was evaporated to dryness under reduced pressure. The resulting product was washed with diethylether several times to remove Me₂SnCl₂ and recrystallized from a benzenediethylether mixture to give crystals of Pd(PPh₃)Cl (dmtsc) (0.45 g, 0.79 mmol). Other complexes of this type, Pd(PMePh₂)Cl(dmtsc), Pd(PMe₂Ph)Cl(dmtsc), Pd(PPh₃)Cl(detsc), Pd(PPh₃)Cl(dmdtc), and Pd(PMe Ph₂)Cl(dmdtc) were similary synthesized by reactions of $[Pd(PR_3)Cl_2]_2$ (PR₃ = PPh₃, PMePh₂, or PMe₂Ph) with Me₂SnCl(XYCNR'₂) (X,Y = S or Se; R' = Meor Et) at the mole ratio of 1:2 in dichloromethane, 70-85% yields. Pd(PPh₃)Cl(dedtc) (dedtc = S_2CNEt_2)

was obtained by reaction of $[Pd(PPh_3)Cl_2]_2$ in dichloromethane with Na(dedtc) $3H_2O$ in ethanol.

(N,N-Dialkylthioselenocarbamato)(N,N-dialkyldithiocarbamato)palladium(II)

To a dichloromethane solution of Pd(PPh₃)Cl(dmtsc) (0.30 g, 0.53 mmol) was added a small excess of Me₂ SnCl(dmdtc) (0.21 g, 0.69 mmol) in the same solvent, and the solution was stirred for 5 hr. A precipitate formed was collected, washed repeatedly with ethanol and then dichloromethane, and dried *in vacuo* to yield Pd(dmtsc)(dmdtc) (0.19 g, 0.48 mmol). The N,N-diethyl analog, Pd(detsc)(dedtc), was similarly prepared by reaction of Pd(PPh₃)Cl(detsc) (0.30 g, 0.50 mmol) with a small excess amount of Na(dedtc) \cdot 3H₂O (0.15 g, 0.67 mmol) in ethanol, and recrystallized from dichloromethane (0.18 g, 0.40 mmol).

(N,N-Dimethylthioselenocarbamato)(N,N-dimethylmonoselenocarbamato)(tert-phosphine)palladium(II) and Related Compounds

A dichloromethane solution of $Me_2Sn(dmmsc)_2$ (0.20 g, 0.44 mmol) was dropped to a solution of Pd(PPh₃)Cl(dmtsc) (0.50 g, 0.88 mmol) in dichloromethane, and followed by stirring for 3 hr, during which time the solution turned from reddish orange to red. The solution was filtered and most of the solvent were evaporated under reduced pressure to produce a precipitate, which was collected by filtration, washed by diethylether several times, and recrystallized from acetone. The ir spectrum indicates that the crystals obtained include a small amount of acetone molecule. To remove the solvent molecule, this product was recrystallized from a dichloromethane–diethylether mixture to give solvent free Pd(PPh₃)(dmtsc)(dmmsc) (0.27 g, 0.39 mmol).

Pd(PPh₃)(dmtsc)(dmmtc) and Pd(PMePh₂)(dmtsc) (dmmsc) were analogously prepared by reactions of Pd(PR₃)Cl(dmtsc) (PR₃ = PPh₃ or PMePh₂) with Me₂ Sn(dmmtc)₂ or Me₂Sn(dmmsc)₂ in dichloromethane. Pd(PPh₃)(dmdtc)(dmmsc) was obtained from Pd(PPh₃) Cl(dmdtc) and Me₂Sn(dmmsc)₂. Properties and analytical data for the newly prepared complexes are collected in Table I.

Physical Measurements

Infrared and proton magnetic resonance spectra were measured as described elsewhere.²

TABLE I. Properties, Analytical and IR Data of the Complexes.

Compound	Color	M.p. °C	C % Found (Calcd)	H % Found (Calcd)	N % Found (Calcd)	M.W. ^a Found (Calcd)	ν(C=N) cm ⁻¹	ν (Pd–Cl) cm ⁻¹	ν(C=O) cm ⁻¹
Pd(PPh ₃)Cl(dmtsc)	Red orange	238-240	44.32	3.92	2.55	576	1553	306, 315	
			(44.15)	(3.71)	(2.45)	(571)			
Pd(PMePh ₂)Cl(dmtsc)	Red orange	209-212	37.54	3.51	2.94	497	1550	305, 313	
			(37.74)	(3.77)	(2.75)	(509)			
Pd(PMe ₂ Ph)Cl(dmtsc)	Red orange	170-172	29.55	3.89	3.28	442	1545	306 br	
			(29.55)	(3.84)	(3.13)	(447)			
Pd(PPh ₃)Cl(dmdtc)	Orange	215 dec.	47.87	4.07	2.75	521	1553	303	
			(48.10)	(4.04)	(2.67)	(524)			
Pd(PMePh ₂)Cl(dmdtc)	Yellow	194–197	41.80	4.08	3.05	469	1546	302	
			(41.57)	(4.15)	(3.03)	(462)			
$Pd(PPh_3)Cl(detsc)$	Red	203-204	46.30	4.18	2.58	588	1529	304, 315	
	<u> </u>		(46.09)	(4.21)	(2.34)	(599)			
$Pd(PPh_3)Cl(dedtc)$	Orange	207-208	49.92	4.55	2.74	554	1527	304	
$\mathbf{P}_{1}(1, \dots, n) (1, \dots, 1, n)$	N / 11		(50.00)	(4.57)	(2.54)	(552)			
Pd(dmtsc)(dmdtc)	Yellow	>250	18.08	3.04	7.17	b	1536		
	Dedaman	246 247	(18.30)	(3.08)	(7.12)	(394)			
Pa(detsc)(deatc)	Red orange	246-247	27.06	4.67	6.31	419	1517		
Pd(PPh)(dmtss)(dmmss)	Ded	100 202	(26.70)	(4.49)	(6.23)	(450)	1545		1.000
rd(rrn ₃)(dimse)(dimise)	Red	199–202	42.24	4.15	4.28	644	1545		1609
Pd(PPh ₃)(dmtsc)(dmmtc)	Orongo	202 204	(41.90)	(3.97)	(4.08)	(087)	1527		1502
	Orange	202-204	44.98	4.32	4.45	613	1537		1593
Pd(PMePh ₂)(dmtsc)(dmmsc)	Red	108_200	(45.04)	(4.20)	(4.58)	(640)	1541		1612
	Reu	198-200	(36.57)	(4.04)	4.50	570	1341		1612
Pd(PPh ₃)(dmdtc)(dmmsc)	Red	161-163	44.00	(4.04)	(4.40)	572	1530		1612
	iteu	101-103	(45.04)	(4.26)	(4.39)	(640)	1339		1013
			(4.5.04)	(4.20)	(4.50)	(040)			

^a VPO in CHCl₃ at 37° C. ^b Insoluble in CHCl₃.

Results and Discussion

(Carbamato)(tert-phosphine)chloropalladium(II): $Pd(PR_3)C1L$ ($PR_3 = PPh_3$, $PMePh_2$, or PMe_2Ph ; L = thioseleno- or dithiocarbamate)

The complexes of this type in the solid state are fairly stable to air and moisture, but somewhat unstable in solution. They are soluble in polar organic solvent, while less soluble in non-polar ones.

Infrared spectra of these complexes in the solid state show a strong ν (C······N) band around 1550 cm⁻¹ (Table I), suggesting that the thioseleno- and dithiocarbamato ligands act in a bidentate manner. The complexes exhibit an absorption band assigned to the ν (Pd–Cl) mode in the 302–315 cm⁻¹ range. Molecular weight determinations indicate that these complexes are essentially monomeric in chloroform (Table I). Moreover, the molar conductance of Pd(PPh₃)Cl (dmtsc) in dichloromethane (1.05 × 10⁻³ *M*) is 0.041 ohm⁻¹ cm² mol⁻¹ at 25° C, indicating that this complexes are suggested to take an essentially rigid planar configuration both in the solid state and in solution, which involves two possible isomers, *D* and *E*.

There are four kinds of N-CH3 groups located in different environments in Pd(PPh₃)Cl(dmtsc). The pmr spectrum of this complex, however, shows only two N-CH₃ signals (Figure 1a), whose chemical shifts are very close to those of the dmdtc analog (Figure 1b). From this result as well as the similarity in coordination ability to palladium(II) between sulfur and selenium,¹⁻³ the separation of the N-CH₃ signals in the dmtsc complex is most likely to result from a magnetic anisotropy effect of PPh₃. This is evidenced from the fact that in $(PR_3)_2Pt(Cl)C(O)NMe_2$ (PR₃ = PPh₃, PMePh₂, and PMe₂Ph) the phosphorus ligands move the N-CH₃ signals nearby to a higher field.⁹ Thus, the higher field signal of Pd(PPh₃)Cl(dmtsc) is assigned to the N-CH₃ protons located in the same side as PPh₃ with respect to a direction involving the carbamato C----N bond, and vice versa. The present observation is in contrast with the pmr spectrum of Ni(PPh₃)Cl(dmdtc), which was reported to exhibit only one N-CH₃ signal even at low temperature.10

Although no pmr evidence has been obtained for the existence of the two isomers, D and E, of Pd(PPh₃) Cl(dmtsc), the pmr spectra of Pd(PMePh₂)Cl(dmtsc)

and $Pd(PMe_2Ph)Cl(dmtsc)$ show two doublets of P-CH₃ signals with different intensities and small separations (Figure 2), indicating the existence of the two isomers. No separation of the N-CH₃ signal owing

Figure 1. Pmr spectra of $Pd(PPh_3)Cl(dmtsc)$ (a) and Pd $(PPh_3)Cl(dmdtc)$ (b) in CH_2Cl_2 .

Figure 2. Pmr spectrum of Pd(PMePh₂)Cl(dmtsc) in CH₂Cl₂.

to the isomers is still found in these complexes. The existence of two isomers of $Pd(PPh_3)Cl(dmtsc)$ may be suggested from the infrared spectrum in the solid state, which shows two $\nu(Pd-Cl)$ bands. This is the case of the PMePh₂ complex, while the PMe₂Ph analog exhibits only a broad $\nu(Pd-Cl)$ band (Table I).

The pmr spectrum of $Pd(PPh_3)Cl(detsc)$ shows two quartets of N-CH₂ signals. From the comparison with the spectrum of $Pd(PPh_3)Cl(dedtc)$, the separation of N-CH₂ signals is similarly attributed to the anisotropic effect of the phosphorus ligand, although the C-CH₃ proton signals are very complicated. The pmr data are summarized in Table II.

Mixed Carbamato Complexes: $Pd(SSeCNR_2)(S_2 CNR_2)$ (R = Me and Et) and $Pd(PR_3)(SSeCNMe_2)$ ($YC(O)NMe_2$) ($PR_3 = PPh_3$, $PMePh_2$; Y = S or Se)

 $Pd(PPh_3)C1L$ (L = dmtsc and detsc) reacts with Me₂ SnCl(dmdtc) or Na(dedtc) · 3H₂O to give mixed chelate complexes, F, with elimination of PPh₃.

This is in contrast with the reaction of $Pd(PR_3)Cl$ (dmtsc) (PR₃ = PPh₃ and PMePh₂) with Me₂Sn (dmmtc)₂ or Me₂Sn(dmmsc)₂, in which the phosphorus ligands were not removed from the palladium, because of a weak chelating ability of dmmtc or dmmsc.

Pd(detsc)(dedtc) is soluble in polar organic solvents, and Pd(dmtsc)(dmdtc) is slightly soluble in polar ones.

TABLE II. Proton Chemical Shifts of the Complexes, δ (ppm).

Compound	N-CH ₃	P-CH ₃	
Pd(PPh ₃)Cl(dmtsc)	3.13, 3.29		
Pd(PMePh ₂)Cl(dmtsc)	3.15, 3.28	2.12, 2.16	
Pd(PMe ₂ Ph)Cl(dmtsc)	3.22, 3.30	1.78, 1.82	
Pd(PPh ₃)Cl(dmdtc)	3.11, 3.24		
Pd(PMePh ₂)Cl(dmdtc)	3.13, 3.23	2.09	
Pd(PPh ₃)(dmtsc)(dmmsc)	2.92(br),		
	3.14, 3.16, 3.30		
Pd(PPh ₃)(dmtsc)(dmmtc)	2.88(br),		
	3.17, 3.18, 3.32		
Pd(PMePh ₂)(dmtsc)(dmmsc)	2.94(br),	2.07, 2.17	
	3.16, 3.29		
Pd(PPh ₃)(dmdtc)(dmmsc)	2.93(br)		
	3.14, 3.28		
	N-CH ₂	C-CH ₃	
Pd(PPh ₃)Cl(detsc)	3.55, 3.76	Complicated	
Pd(PPh ₃)Cl(dedtc)	3.57, 3.71	1.15, 1.22	
Pd(detsc)(dedtc)	3.71, 3.76	1.28, 1.31	

On the other hand, the mixed carbamato complexes with tertiary phosphine are fairly soluble in common organic solvents. All the complexes are stable to air and humidity both in the solid state and in solution.

The pmr spectrum of Pd(detsc)(dedtc) (Figure 3) shows two kinds of triplet and quartet both with the intensity ratios of 1:3. It was previously reported that in M(detsc)₂ (M = Ni(II), Pd(II), and Pt(II)) the pmr signals of N-C₂H₅ group *trans* to sulfur with respect to the carbamato C·····N bond occur in a slightly higher magnetic field than those *trans* to selenium, and are almost identical in chemical shift with those of M(dedtc)₂.¹ In view of this fact, the triplet and quartet signals with smaller intensities may be assigned to the N-C₂H₅ protons *trans* to the selenium atom with respect to the C·····N bond, and those with larger intensities may be due to the N-C₂H₅ protons *trans* to the sulfur of detsc as well as dedtc protons.

Ir spectra of the mixed carbamato complexes with *tert*-phosphine in the solid state show a strong ν (C—N) band around 1530 cm⁻¹, which is characteristic of a bidentate thioseleno- or dithiocarbamate. They also exhibit the ν (C=O) band about 1600 cm⁻¹, which confirms that the monothio- or monoselenocarbamato ligand coordinates to the palladium through the sulfur or selenium with a free carbonyl in the solid state.

Figure 3. Pmr spectrum of Pd(detsc)(dedtc) in CH₂Cl₂.

Figure 4. Pmr spectra of Pd(PPh₃)(dmtsc)(dmmsc) in CH₂ Cl₂ at room temperature (a) and at -32° C (b).

Conductivity measurements in dichloromethane at 25° C indicate that Pd(PPh₃)(dmtsc)(dmmsc) is nonelectrolyte (Λ at 1.05×10^{-3} M: 0.291 ohm⁻¹ cm² mol⁻¹), but the complexes of this type in chloroform gave somewhat smaller molecular weights than the calculated ones. These results seem to indicate that the carbonyl oxygen of monothio- or monoselenocarbamate weakly coordinates to palladium(II) to dissociate slightly *tert*-phosphine in a dilute solution, as in the case of M(PPh₃)₂(SeC(O)N(n-Bu)₂)₂ (M = Pd(II) and Pt(II)).¹¹

Figure 4 shows the pmr spectrum of Pd(PPh₃) (dmtsc)(dmmsc) in dichloromethane. The broad N-CH₃ signal observed at room temperature is characteristic of the monodentate dmmsc¹¹ and three sharp N-CH₃ signals are due to the bidentate dmtsc. Comparison with the pmr spectrum of the dmdtc analog, Pd(PPh₃)(dmdtc)(dmmsc), (Table II) reveals that two signals with a small separation around 3.15 δ are assigned to the Me¹ and Me³ protons, and the lowest field signal, though the separation was not observed, to the Me² and Me⁴ protons in the following isomers, *G* and *H*.

The existence of two isomers in the complexes of this type is also confirmed by the spectrum of Pd(PMe Ph_2)(dmtsc)(dmmsc), which exhibits two doublets of P-CH₃ signals with the intensity ratio of about 1:1 (Table II).

With decreasing temperature for $Pd(PPh_3)(dmtsc)$ (dmmsc) in dichloromethane, the broad N-CH₃ signal splits into four lines (Figure 4b). Again, the comparison with the pmr spectrum of the dmdtc analog, $Pd(PPh_3)$ (dmdtc)(dmmsc), at low temperature reveals that the phosphorus ligand causes the main splitting of the signals and small separations are due to the nature of atoms (S and Se) *trans* to dmmsc with respect to palladium. Similar temperature dependent spectra were also observed in Pd(PPh_3)(dmtsc)(dmmtc).

References

- 1 T. Tanaka and N. Sonoda, Inorg. Chem., 10, 2337 (1971).
- 2 N. Sonoda and T. Tanaka, J. Inorg. Nucl. Chem., 35, 1145 (1973).
- 3 N. Sonoda, S. Araki, T. Onishi, and T. Tanaka, J. Inorg. Nucl. Chem., 36, 1985 (1974).
- 4 J. Chatt and L. M. Venanzi, J. Chem. Soc., 2351 (1957).
- 5 T. Kamitani and T. Tanaka, *Inorg. Nucl. Chem. Lett.*, 6, 91 (1970).
- 6 M. Honda, M. Komura, Y. Kawasaki, T. Tanaka, and R. Okawara, J. Inorg. Nucl. Chem., 30, 3231 (1968).
- 7 S. Nakajima and T. Tanaka, to be published.
- 8 K. Tanaka, S. Araki, and T. Tanaka, Bull. Chem. Soc. Japan, 46, 2136 (1973).
- 9 C.R. Green and R.J. Angelici, *Inorg. Chem.*, 11, 2095 (1972).
- 10 J.M.C. Alison and T.A. Stephenson, J. Chem. Soc. Dalton, 254 (1973).
- 11 K. Tanaka and T. Tanaka, Inorg. Nucl. Chem. Lett., 9, 429 (1973); Bull. Chem. Soc. Japan, 47, 847 (1974).